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Explicit Determination of Nontrivial 
Torsion Structures of Elliptic Curves 

Over Quadratic Number Fields 
By Markus A. Reichert 

Abstract. We determine equations of the modular curves X1(N) for N = 11, 13, 14, 15, 16, 17 
and 18. Except for N = 17, these are the only existing elliptic or hyperelliptic X1(N). 
Applying these X1(N), we calculate tables of elliptic curves E over quadratic fields K with 
torsion groups of one of the following isomorphism types: 

Etor(K) -Z/mZ, m = 11, 13, 14,15, 16 and 18. 

1. Introduction. Let E denote an elliptic curve defined over an algebraic number 
field K of finite degree over the rationals Q. We shall assume that the curve E is 
given in Weierstrass normalform: 

(1) E: y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6; a,, a2, a3, a4, a6 E K. 

Designate by E(K) the group of rational points of E over K. Mordell and Weil 
proved that E(K) is finitely generated. Hence, E(K) may be written as a direct 
sum, 

E(K) = Etor(K) CD Efr(K@) 

of the torsion group Etor(K) and a free group Efr(K). The number of free 
generators of Efr(K) is called the rank of E over K. Of course, Etor(K) is finite, 
and it is conjectured that the order of Etor(K) is bounded by a constant N(K) 
depending only on K. 

Boundedness Conjecture: 

IEtor(K) I < N(K). 
In 1969 Manin [7] proved this conjecture for the p-component of Etor(K), p being a 
prime. In 1979 Kenku [2] explicitly determined this Manin-bound for the case p = 2 
and K a quadratic field over Q. He proved that the maximal 2-power order of a 
K-rational torsion point of an elliptic curve over K is 16. This bound is sharp. We 
have computed elliptic curves over quadratic fields K over Q with K-rational points 
of order 16. 

In 1977 Mazur [8] proved the boundedness conjecture in the case K = Q. He 
determined that N(Q) equals 16, and more precisely he obtained 

Etor (Q) Z/mZ; m = 1,2,...,10or12, 
Etor(Q)= Z/2Z X Z/mZ; m = 1,2,3,4. 
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2. Determination of Nontrivial Torsion Structures. When speaking of nontrivial 
torsion structures, we think of structures which do not exist over Q. We have 
calculated tables of elliptic curves E over quadratic fields K whose torsion group is 
isomorphic to one of the following groups: 

Etor(K) Z/mZ, m = 11, 13, 14,15,16 and 18. 

These tables were computed by a modification of a method of Kubert [4] which in 
turn is extending the method of Billing and Mahler [1] leading to the modular curves 
X1(N). Our first result is 

THEOREM 1. For N = 11, 13, 14, 15, 16, 17 and 18 the modular curves X1(N) are 
given by the following equations: 

(i) X1(11): V2 + V= U3 - U2, 
(ii) X1(13): V2 + (U3 - U2 - 1)V - U2 + U = 0, 

(iii) X1(14): V2 + UV+ V= U3 - U, 

(iv) X1(15): V2 + UV+ V= U3 + U2, 
(v) X1(16): (U2 + 3U + 2)V2 + (U3 + 4U2 + 4U)V - U = 0, 

(vi) X1(17): V4 + (U + 2)V3 + (U3 + 1)V2 + (-U - 2U4- U3- U2 U)V 
- U5 - 2U4 - U3 = 0, 

(vii) X1(18): (U2 - 2U + 1)V2 + (-U3 + U - 1)V + U3 - U2 = 0. 

Except for N = 17, these are the only existing elliptic or hyperelliptic X1(N) [9]. 
In the literature, these X1(N) are partially known, but nobody as yet seems to have 
used them for calculating examples of nontrivial torsion structures. 

Proof. To prove Theorem 1, we start from a special form of the elliptic curve E 
over K: 

E(b, c): y2 +(1 - c)XY- bY= X3 - bX2; b,c e K. 

This is called the E(b, c)-form. We obtain it from the Weierstrass normal from (1) of 
E by imposing on E the following three conditions: 

(i) P = (0,0 ) e Etor(K), 
(ii) the straight line X = 0 is a tangent to E at P, 

(iii) ord(P) # 2, 3. 
(i) implies that a6 = 0, and from (ii) and (iii) one deduces that a2, a3 O 0, and 
a4 = 0. Now the equation for E assumes the form 

E: y2 + ajXY + a3Y = X3 + a2X2; a2, a3 # 0. 

Applying the birational transformation 

X- = 3 )XI y = (3 )y, 

we get the equation 

E: 1,2 + ala2XIY + -2Y X3 + 2 V. 
a3 a32 a32 

On substituting 

a1a2 a23 (2) ~~1 -c= and b0 (2) 
~~~~~~~~a3 a3 
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we obtain the E(b, c)-form of the elliptic curve. We shall carry out in detail the 
necessary calculations relating to X1(N) in the most simple case N = 11 and outline 
the remaining cases of N = 13, 14, 15, 16, 17 and 18, which are treated in a similar 
manner. (See [11] for more details.) 

The Case of X1(11). To calculate X1(11), we assume that ord(P) = 11. Then 
5P = -6P, and 

(3) X5P = X-6P = X6P. 

In Eq. (3), xp means the x-coordinate of the n-multiple nP of P. Now we calculate 
the multiples of P on E(b, c). They are: 

P = (0,0), 

2P = (b, bc), 

3P = (c, b -c), 

4P = (r(r-1), r2(c + r-1)); b = cr, 

5P = (rs(s- 1), rs2(r-s)); c = s(r- 1), 

6P = (-mt, m2(m + 2t-1)); m(1-s) = s(1-r) and 

r - s = t(1 - s). 

Equation (3) implies that 

(4) rs(s - 1) = -mt. 

Without loss of generality, the cases s = 1 and s = 0 may be excluded. Reversing 
the substitutions made when calculating 6P, we obtain from Eq. (4): 

(5) X(1 1): r2- 4sr + 3s2r - s3r + s = 0. 

This is one of the equations for X1(11), called the "raw form" of X1(11). This 
equation has to be transformed birationally into the equation of the X1(11) given in 
Theorem 1. The goal of this transformation is to get an equation of X1(11) with as 
few singularities as possible. This transformation is done in three steps. When 
computing the other X1(N) we can take roughly the same steps to get the desired 
transformations. 

1. Step: Translation. We translate the point Q = (1,1) on X1(11) according to Eq. 
(5) to obtain Q' = (0,0 ) by the birational transformation: 

S= U1+1, r= V+ 1. 

Equation (5) implies 

(5.1) u1v1 -ulv1 = 0. 

2. Step: Quadratic transformation. By this transformation we remove the singular- 
ity at (0,0 ). We put 

to obtain from Eq. (5.1) 

(5.2) v2 + 2+v2-u23=O. 
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3. Step: Separation of variables. We set 

U2= V' V2= V 
From Eq. (5.2), one derives 

(6) XJ(11): V2 + V= U3 - U2. 

Up until now, we made the calculations by hand. The subsequent calculations were 
performed by means of the computer algebra system SAC-2, which we implemented 
on a "Siemens 7.561" at the "Rechenzentrum der Universitat des Saarlandes". First 
of all, we give a list of the multiples nP for n = 7,..., 10. We shall write nP = 
(Nx/Dx, Ny/Dy) and exhibit Nx, Dx, Ny and Dy. 

7P: 

Nx = 2mt3 +(5m2 - 3m)t2 +(4m3 - 5m2 + m)t + m4 -2m3 + m2, 

Dx = -t3+ t2 

Ny = _mt6 +(-4m2 + 4m)tS +(-6m3 + 15m2 - 6m)t4 

+(-4m4 + 22m3 - 20m2 + 4m)t3 

+(-mS + 16m4 - 25m3 + 1rM2 - m)t2 

(6m' - 14m4 + lOm3 - 2m2)t 

+M6 - 3mS + 3m4 -m3 

Dy = tS - 2t4 + t3. 

8P: 

Nx = -tS +(-2m + 3)t4 +(_m2 + 6m-3)t3 +(4m2-5m + 1)t2 

+ (m3- 2m2 + m)t, 

Dx = -4t3 +(-4m + 8)t2 +(_m2 + 6m - 5)t + m2 - 2m + 1, 

Ny = -t7 + (-6m + 3)t6 + (-13m2 + 14m - 3)tS 

+ (-13m3 + 22m2 _ lOm + 1)t4 

+ (-6m4 + 14m3 - lOM2 + 2m)t3 +(-mS + 3m4 - 3m3 + m2)t2, 

Dy = 8t4 +(12m - 20)t3 + (6m2 - 24m + 18)t2 

+(m3_- 9m2 + 15m - 7)t - m3 +3m2 - 3m + 1. 

9P: 

Nx - 2mt4 +(9m2 - 5m)t3 +(12m3 - 16m2 + 4m)t2 

+ (6m - 13m3 + 18m2 - m)t + mI - 3m4 + 3m3 -m2, 

Dx = t4 - 4t3 +(-2m + 6)t2 +(4m - 4)t + m2 - 2m + 1, 

Ny - 4m2t7 +(12m3 - 16m2)t6 +(13m4 - 30m3 + 25m2)tl 

+ (6m5 - 3m4 + 16m3 - l9m2)t4 

+ (m6 + 28ml - 52m4 + 16m3 + 7m2 )t3 

+(24m6 - 71m5 + 69m4 - 21m3 -m2)t2 

+ (8m7- 32m6 + 48m' - 32m4 + 8m3)t 

+ _- 5m7 + lOin6 - lOin + m" -m 



ELLIPTIC CURVES OVER QUADRATIC NUMBER FIELDS 641 

Dy = t7 -7t6 +(-3m + 21)t' + (15m - 35)t4 + (3m2 - 30m + 35)t3 

+(_9m2 + 30m - 21)t2 +(-m3 + 9m2 - 15m + 7)t 

+m- 3m2 + 3m - 1. 
lOP: 

NX = -mt7 +(-2m2 + 4m)t6 +(-m3 + 6m2 - 6m)t' +(-4m2 + 4m)t4 

+ (-3m4 + lrm3 - 3m2 - m)t3 +(-ml + 14m4 - 17m3 + 4m2)t2 

+ (6m5 - 13m4 + 8m3 - m2)t + m6 - 3m5 + 3m4 -m3 

Dx = t6 +(6m - 4)tS +(llm2 - 20m + 6)t4 +(6m3 - 30m2 + 24m - 4)t3 

+(m4 - 14m3 + 28m2 - 12m + 1)t2 +(-2m4 + lOm3 - lOM2 + 2m)t 

+m4-2m3 + m2 
Ny = 3m2t10 + (13m3 - 21m2)t9 + (22m4 - 91m3 + 64m2)t8 

+ (18m' - 160m4 + 271m3 - 111m2)t7 

+(7m6_- 146m' + 472m4 - 449m3 + 120m2)t6 

+ (m7- 73m6 + 438m5 - 744m4 + 453m3 - 83m2)t5 

+(-19m7 + 235m6 - 654m' + 687m4 - 285m3 + 36m2)t4 

+ (-2m8 + 74m7 - 330m6 + 537mS - 379m4 + 109m3 - 9m2)t3 

+(13m8 - 96m7 + 230m6 - 245m' + 120m4 - 23m3 + m2)t2 

+(m9 - 15m8 + 52m7 - 78m6 + 57mS - 19m4 + 2m3)t 

-m9 + 5m8 - lOm7 + lOM6 - 5m5 + m4, 

Dy = t9 +(9m - 6)t8 + (30m2 - 48m + 15)t7 

+ (45m3 - 141m2 + 105m - 20)t6 

+(30m4 - 186m3 + 267m2 - 120m + 15)t5 

+ (9mS _- llm4 + 303m3 - 258m2 

+75m - 6)t4 +(m6 - 30m5 + 156m4 - 244m3 + 132m2 - 24m + 1)t3 

+ (-3m6 + 36m' - 102m4 + 99m3 - 33m2 + 3m)t2 

+ (3m6 - 18m5 + 30m4 - 18m3 + 3m2)t - m6 + 3mS - 3m4 + m3. 

Next we calculate the equation of X1 (13). On putting 

6P = -7P, 

we obtain 

m(t4 - 3t3 +(-5m + 3)t2 +(-4m2 + 5m - 1)t - m3 + 2m2 - m) = 0. 

Without loss of generality, the case m = 0 can be excluded. We get for X1(13) the 
"raw form": 

t4- 3t3 +(-5m + 3)t2 +(-4m2 + 5m - 1)t - m3 + 2m2 - m = 0. 

By the birational transformation 

V+ U3- U _U2+ U 
m= . , t= . 
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we arrive at the equation for X1(13) claimed in the theorem: 

X1(13): V2 +(U3 - U2 - 1)V- U2 + U= 0. 

The case of X1(14). For the calculation of X1(14), one must make sure that P is 
not a point of order 7. From the equation 

6P = -8P, 
one obtains 

t5 +(6m - 3)t4 +(5m2 - 14m + 3)t3 +(m3 - 1OM2 + 10m - 1)t2 

+(-2m3 + 4m2 - 2m)t = 0. 

The case t = 0 and m # 0,1 implies that P has order 7. On the other hand, if t = 0 
and m = 0,1, one obtains b = 0. This is a contradiction to (2). Without loss of 
generality, t may be assumed different from zero. Then we get for X1(14) the "raw 
form": 

t4 +(6m - 3)t3 +(5m2 - 14m + 3)t2 +(m3 - 1OM2 + 10m - 1)t 

-2m3 + 4m2 - 2m = 0. 
By the substitution 

8V- 24U+ 32 2V- U2- 2U+ 8 
(2U-8)V- U3 + 6U2-32' 2V-u2 + 2U+ 8' 

we transform this equation birationally into 

V2 = U3 + U2 - 8U+ 16. 
Applying now the algorithm of Laska [6], we get the form of X1(14) given in the 
theorem: 

X1(14): V2 + UV+ V = U3 - U. 

The case of X1(15). To calculate X1(15), we put 

7P = -8P. 
This implies the condition 

t8 +(2m-4)t7 +(m2 + 6)t6 +(33m2-17m--4)tS 
+ (37m3- 78m2 + 32m + 1)t4 

+(25m4 - 94m3 + 93m2 - 24m)t3 +(8m5 - 50m4 + 84m3 - 50m2 + 8m)t2 

+(m6 - 12m5 + 31m4 - 31m3 + 12M2- m)t - M6 

+4mS - 6m4 + 43 -m2 = 0; 

or, equivalently, 

(m + t -l)(t -l)(m + t) 

(tS - 2t4 +(7m + 1)t3 +(12m2 - 12m)t2 

+(6m3_- 12m2 + 6m)t + m4 - 3m3 + 3m2 - m) = 0. 

Without loss of generality, we can exclude the case that the first three factors are 
equal to zero. Then the "raw form" of X1(15) is given by 

t- 2t4 +(7m + 1)t3 + (12m2 - 12m)t2 + (6m3 - 12m2 + 6m)t 

+m4- 3m3 + 3m2 _ m = 0. 
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By the transformation 

-V2 +(u2 - U)V+ U3 UV 
m -= 

-v2 + (U2 + U)V + U3 + U2' _V-2 + (U2 + U)V + U3 + U2 ' 

we get the form of X1(15) required in the theorem: 

X1(15): V2 + UV+ V= U3 + U2. 

The case of X1(16). To calculate X1(16), we put 
7P = -9P. 

This implies the following condition: 

4mt7 +(14m2 - 18m)t6 +(16m3- 54m2 + 34m)t5 

+ (7m4- 53m3 + 89m2 - 35m)t4 

+(mS - 21m4 + 80m3 - 81m2 + 21m)t3 

+(-3m5 + 34m4 - 68m3 + 42m2 _ 7m)t2 

+ Om' - 25m4 - 27m3 -_ rM2 + m)t + m6 - 4mS + 6m4 - 4m3 + m2 = 0. 

Equivalently, 

m(m + t - 1)(m + 2t - 1) 

(2t5 + (4m - 6)t4 +(m2 -10m + 7)t3 +(-3m2 + lrm - 4) t2 

+(5m2 - 6m + l)t + m3 - 2m2 + m) = 0. 

Once more we can exclude that the first three factors are zero, and therefore the 
"raw form" of X1(16) is: 

2t' + (4m - 6)t4 +(m2 - 10m + 7)t3 +(-3m2 + lrm - 4)t2 

+ (5m2 - 6m + l)t + m3 - 2m2 + m = 0. 

By the following birational transformation 

v2 +(U-1)V -1 

V2+(U-1)V-U V-U' 

this form is equivalent to 

X1(16): (U2 + 3U+ 2)V2 +(U3 + 4U2 + 4U)V- U 0. 

The case of X1(17). We calculate the equation of X1(17) by setting 

8P = -9P 

and obtain the condition 

-t9 +(-2m + 7)t8 +(-m2 + 24m - 21)t7 +(56m2 - 87m + 35)t6 

+ (89m3 - 213m2 + 151m - 35)tS 

+(81m4 - 291m3 + 332m2 _ 143m + 21)t4 

+ (40m5 - 212m4 + 365m3 - 261m2 + 75m - 7)t3 

+(10m6 - 81m5 + 200m4 - 215m3 + 105m2 - 20m + l)t2 

+ (m7-15m6 + 52m5 - 78m4 + 57m3 - 19m2 + 2mr)t 

-m7 + 5m6 - 10Mi + 1Om4 - 5m3 + m2 = 0. 
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This is equivalent to 
(m + t - 1)2 

(t7- 5t6 +(-12m + 1O)tt +(-27m2 + 33m -l)t4 

+(-23m3 + 59m2 - 33m + 5)t3 +(-8m4 + 40m3 - 45m2 + 14m - 1)t2 

+ (-m5 + lrm4 - 21m3 + 13m2 - 2m)t + m5 - 3m4 + 3m3 - M2) = 0. 

The case m + t - 1 = 0 can be excluded without loss of generality, and the "raw 
form" of X1(17) is 

t7- 5t6 +(-12m + 10)t5 +(-27m2 + 33m - 10)t4 
+ (-23m3 + 59m2 - 33m + 5)t3 +(-8m4 + 40m3 - 45m2 + 14m - 1)t2 
+(-mS + lrm4 - 21m3 + 13m2 - 2m)t + m5 - 3m4 + 3m3 -M2 = 0. 

By virtue of the transformation 
V + 1 U2+ U 

m= V+ U2' t= 2' v~~u2V 
the above form of X1(17) is birationally equivalent to the form required in the 
theorem: 

X1(17): V4 + (U + 2)V3 + (U3 + 1)V2 + (-U5 - 2U4 - U3 - U2 U)V 
-U5 - 2U4 - U3 =0. 

The case of X1(18). To calculate the equation of X1(18), we set 
8P = -1OP. 

This equation implies the condition: 

-t1l + (-12m + 7)t10 + (-36m2 + 76m - 21)t9 
+ (-47m3 + 209m2 - 204m + 35)t8 

+ (-30m4 + 251m3 - 497m 2 + 300m - 35) t7 

+ (-9mS + 151m4 - 508m3 + 617m2- 260m + 21)t6 

+(_m6 + 44mS - 222m4 + 462m3 - 416m2 + 132m - 7)t5 

+ (5m6_ lOn1M + 44m4 - 140m3 + 136m2 - 36m + l)t4 

+ (26m6 - 120m5 + 162m4 - 64m3 - 8m2 + 4m)t3 

+ (9m7- 67m6 + 153m5 - 147m4 + 58m3 - 6m2)t2 

+(m8 _ 14m7 + 47m6 - 68m' + 47m4 - 14m3 + m2)t 

-m8 + 5m7 -lOM6 + lOim - 5m4 + m3 = 0; 

or, equivalently, 

(m + t)(t - 1)(m + t -1)2(t2 - 2t - m + 1) 
(t5 +(9m - 2)t4 + (6m2 - llm + l)t3 + (m3 + 3m)t2 

+(4m3 -4m2)t + m4 -2m3 + m2) = 0. 

Without loss of generality, the first four factors can be omitted, and we get for 
X1(18) the "raw form": 

X1(18): tS +(9m - 2)tt4 +(6m2 - llm + 1)t3 +(m3 + 3m)t2 
+(4m3 --4m2)t + m - 2m3 + m2 = 
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Transforming now this equation birationally by means of the transformation 

(-U+1)V+ U2 UV 
_V2 +(U + 1)V + u2 'v2 + (U + 1)V + U2 

we obtain the form of X1(18) asserted in the theorem: 

X1(18): (U2 - 2U+ 1)V2 +(-U3 + U- 1)V+ U3 - U2 = O. 

The X1(N) are elliptic for N = 11, 14 and 15. The form of these X1(N) as given in 

the theorem is called an equation of restricted type for X1(N) [6]. 
In the following table, we compile the characteristics of these X1(N). In the first 

row we list the values of N, in the second the discriminant of X1(N), then the 

j-invariant, the conductor of X1(N), the torsion group of X1(N) over Q, and in the 

last row we display a generator of X1(N)tor(Q). 

N 11 14 15 

A -11 -2 .14 -15 

212 56 1 

11 2 .14 15 
CXi(N) 11 14 15 

X1(N)tor(Q) Z/5Z Z/6Z Z/4Z 

Generator of 
(1, -1) (1, -2) (15,108) 

For calculating an elliptic curve with a point of order 11, we transform X1(11) into 

the form Y2 = f(X) for f(X) e Z[ X]. The corresponding equation for X1(11) is 

(7) Y2 = X3 - 4X2 + 16. 

Inserting, e.g., X = 2 yields 

Y= +2V27. 
We now carry out our calculations over the ground field Q(2). If we set X = 2 and 

Y = 2VF in the birational transformations, performed to obtain X(1 1) in the form 

of Eq. (7), and reverse these transformations, we get the coefficients b and c as 

1 
b= --Vi, c -(1-2), 164 

giving the elliptic curve E in E(b, c)-form 

(4 416 16 

with P = (0, 0) as a point of order 11. 

Not much is known concerning the question: Over which quadratic fields K are 

there elliptic curves with a K-rational point of order 11 and over which are there 

none? With regard to this question, we have examined the fields Q(VIT) and Q( -11 

and have proved 

THEOREM 2. Over the quadratic fields K = Q(VIT) and K = Q(V'T ), there are no 
elliptic curves having a K-rational point of order 11. 
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Proof. One must find the rational points of X1(11) and the rational points of 
XJ(11) twisted by -1 or -11. Then one proves Theorem 2 by means of theorems of 
Nagell [10] and Kramer [3]. (See [11] for details.) 

We shall now establish tables of elliptic curves E with torsion groups of one of the 
following isomorphism types: 

Etor(K) _ Z/mZ; m = 11, 13, 14, 15, 16 and 18. 

K is a proper quadratic number field over Q. The only K-rational points which we 
have found on X1(17) over quadratic number fields K over Q are cusps. Therefore, 
we do not expect that there are examples of elliptic curves over K with K-rational 
points of order 17. This is also suggested by the fact that X1(17) has genus 5.* In our 
list of examples, the curve E will be given in short Weierstrass normalform: 

E: y2 X3 +AX+ B; A B E K, 

which is quasi-minimal. This means that there are no rational primes p such that 

P41 A and p6 lB. 
Each example in the tables is separated from the other by a row of stars. The 
examples are printed according to the following scheme: 

X D 
A 
B 
I 
p v (j) type of decomposition 

x Y 
p y type of decomposition 

Here: "X" is the X-value which we insert into the equation y2 = f(X) of X1(N) 
for getting the desired elliptic curve E over K. "D" is, up to a factor 4, the 
discriminant of the quadratic ground field K= Q(jiY). "A" and "B" are the 
coefficients of the elliptic curve E given in short Weierstrass normal form. In 
addition, we have calculated the j-invariant and a prime decomposition of j. Here p 
denotes the rational prime that divides the prime divisor p, v. is the normalized 
p-adic exponential valuation and v,(j) is the p-value of j. The last column contains 
the type of decomposition of p in K. "D" denotes decomposed, "I" inert and "R" 
ramified. "x" and "y" are the x- and y-coordinates of a generator of Etor(K). 
Finally, we calculated the U -values of E and determined the coefficient divisor m 
(see [14]). The u-values are important with respect to the determination of the 
torsion structure of an elliptic curve over an algebraic number field [14] and with 
respect to height-calculations [5]. For each rational prime p, we display the U-value 
and the type of decomposition of p in K, if u, is different from zero. If the 

,-values are zero for all prime divisors p of K, we leave the space empty. 
The numbers a = a + bVD e Q(VD), a, b E Q, are displayed as follows: 

a = (a, b). 

* Recently Kamienny has proved, that there are no elliptic curves over quadratic number fields K over 
Q having a K-rational point of order 17. (Cf. S. Kamienny, "Torsion points on elliptic curves over all 
quadratic fields", to appear.) 
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TABLE I 

Etor(K)_ Z/11Z 

4 -7 

-2187 , -8641 
170694 , -87264 

2994657/68608, 4432109/137216 

2 -11 D 
67 -1 D 
67 0 D 
13729 3 D 
13729 0 D 

( 15, -Ia ) ( 324, -108 

3 1 I 

* * ** *, * * * ** S * * * ** * * * * * ** * ** ** * ** * * * * * ** * * *. * ** ** * ** * ** ** * ** * * * * 

2 2 

( -3483 , 1836 
(163890 , -1o80o8 

( -998961/184 , -4738131/1472 

2 -11 R 
23 -1 D 
23 0 D 
7393 3 D 
7393 0 D 

( 33, 30) (0, 432) 

3 1 I 

TABLE II 

Etor(K) Z/13Z 

-2 193 

( -1750172807187, 125980162056 
( 1262137402216304190 , -90850638163719672 

( -196626675110450473/326517350400 , 0 

2 -13 D 
3 -13 D 
5 -2 I 
7 3 D 
83071 3 D 

( 549447 , -39516 ) ( 34274664 , -2466936 

3 1 D 
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TABLE II (continued) 

-1 17 

( -411864 , 99560 
(211240640 , -51226432 

(-60698457/406960 , 0 

2 -13 D 
3 3 I 
5 -1 I 
131 3 I 

358 , -74 ) ( 6656 , -1536 

2 17 

-4323 . -1048 
227630 , 55208 

-60698457/40960 , 0 

2 -13 D 
3 3 I 
5 -1 1 
131 3 I 

-49 , -12 ) ( -296 , -72 

3 313 

( 2327667525288 , 1315675463376 
(1551448970003125440 , 87693080563196352 

(68633948441807/65303470080 , 0 

2 - 13 D 
3 -13 D 
5 -1 I 
7 3 I 
5849 3 D 

( -277962 , -15714 ) ( -292750848 , -16547328 

3 1 D 

4 2257 

( -1794164929227099 , -37765616934240 
(40912730980463108972790 , 861177532113128252448 

( 42299625914661454417/534966026895360 , 0 ) 

2 -26 D 
3 -13 D 
5 -1 I 
13 6 I 
53 3 I 
389 3 D 

( 18897603 , 397776 ) ( -6952140576 , -146336544 

-3 1 D 
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TABLE III 

Etor(K) )-Z/14Z 

-3 22 

( -439986643037381403 , -93803909128605216 
( 7516285622934343121440566 , 16o2474795479465435675232 

( 19631310746169659224439/53197633242289815552 , 1262333629667 
'110 1 30'3)129'j/!';3l1t17338 11153661127008 

2 -28 R 
3 -14 D 
7 -7 D 
13 -2 D 
13 0 D 
239 -1 D 
239 0 D 
11113 0 D 
11113 3 D 
34651 0 D 
34651 3 D 
1718011 3 D 
1718011 0 D 

( -48820125, -14300688 ) ( -5334018607008, -11153680851232 

3 1 D 

-2 7 

( _-51033138723 , -19289646936 
( 6265927466034894 , 2368297291386600 

( 3265635553/11664, 29548593817/279936 

2 -14 R 
3 -7 D 
19 -3 D 
19 0 D 
165059 0 D 
165059 3 D 

( 92463 , 27300 ) ( -5429592 , -3143448 
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TABLE III (continued) 

-1 6 

(154171814410420731, I-62934871437671616 ) 
32948988908969804432803542 , 13451360607076546447682112 

2517315283981159814713529/1498265856000000 , 368307445325827 
414901 1931/5618496960000000 ) 

2 -28 R 
3 -7 R 
5 -7 D 
19 0 D 
19 3 D 
43 -1 D 
43 0 D 
71 -2 D 
71 0 D 
211 0 D 
211 3 D 
331 3 D 
331 0 D 
503 0 D 
503 3 D 
861293 0 D 
861293 3 D 

167199699 , 61992864 ) ( 5543964000 , -21639096000o ) 

1 10 

-12054662356347 , 2794167678816 
19484656563306373974 , -5460161248744831008 

21779518798109295558939/32626354176000 , -5136542789480266512 
563/244397656320000 

2 -28 R 
3 -7 D 
5 -7 R 
13 0 D 
13 -1 D 
31 3 D 
31 0 D 
41 0 D 
il-i -2 D 

79 0 D 
79 3 D 
1721 3 D 
1721 0 D 
1180409 3 D 
1180409 0 D 

( -708717 , 591792 ) ( -4394878560 , 1320834688 

3 1 D 
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TABLE III (continued) 

2 3 

( -2952963 , 1704888 
( I067436846 , -616284936 

( 15792703/22464 , -103368947/1334784 

2 114 R 
3 -7 R 
13 -1 D 
13 0 D 

37 0 D 
37 3 D 
2269 3 D 
2269 0 D 

-1185, 684 ) ( -26568, 15336 

TABLE IV 

Etor(K) Z/15Z 

-1 -7 

( 539042262696 , -91 517868792 
( -158658192869698368 , -141784-327118177856 

( -19853211655423/61975789568, 8327088487989/108457631744 

2 -15 D 
7 -5 R 
11 0 D 
11 -3 D 
29 0 D 
29 -1 D 
179 0 D 
179 3 D 
259499 0 D 
2599499 3 D 

( 4155606 , -54978 ) ( 8591837184- , -197793792 

3 1 I 

-1/2 -95 

( -3684+3438820539915 , 9129754598177520 
( 3933501427988825876471430 , -1526895018264725064674640 

( -130339725162288764665/1531233206539812864- , 163416495031638 
43652635/1309204391.59153999872 

2 -15 D 
3 -15 D 
5 2 R 
11 -3 D 
1 1 0 D 
19 -5 R 
61 -1 D 
61 0 D 
2671 0 D 
2671 3 D 
23189 0 D 
23189 3 D 
223259 0 D 
223259 3 D 
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TABLE IV (continued) 

964404375 , 2334036 
29444742515700 , 232692977124 

3 1 D 
5 2/3 R 

3/2 33 

( 4943582901 , -860567328 
( 100854159004422 , -17556455592864 

( -18967036655308187/8785723392 , -4955692963031933/13178585088 

2 -15 D 
3 -5 R 
29 0 D 
29 3 D 
31 -3 D 
31 0 D 
12281131 0 D 
12281131 3 D 

-8889 , 1548 ) ( -2251476 , 391932 

2 5 

-630315 , 281880 
328392630 , -146861640 

-121945/32 , 0 

2 -5 I 
5 2 R 
29 3 D 

( -583 ,264 ) ( -11340 ,5076 

3 1 I 
5 2/3 R 

* * * ** * ** *-* ** * ** ** * ** * . * ** ** * ** * * ** ** ** ** ** * ** ** ** ** ** ** * ** * ** * 

TABLE V 

Etor(K) Z/16Z 

-4 10 

-49 19326431372 -540298585008 
4389838223699367504 , 688123047823241184 

378499465220294881/120530818800 , 0 

2 -8 R 
3 -16 D 
5 -4 R 
7 -1 I 
723361 3 D 

84458 , 151140 ) ( -689692320 , 111484512 

5 1 n 
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TABLE V (continued) 

-3 -15 

4o04692o08 , 73778280 
-1931895059776 , -658051602240 

1023887723039/928972800 , 0 

2 -16 D 
3 -8 R 
5 -4 R 
7 -1 I 
10079 3 I 

27238 , -2602 ) ( 5253120 , -497664- 

-1/2 - 15 

272133 , 0 
41173974 , 0 

102:3887723039/928972800, 0 

2 -16 D 
3 -8 R 
5 -4 R 
7 -1 I 
10079 3 I 

3 , -144 ) ( -6480 , -432 

1 105 

319281675048 , 22722016968 
( 63178738374096576 , 5446154665957824) 

1023887723039/928972800 , 0 

2 -16 D 
3 -8 R 
5 -4 R 
7 -2 R 
10079 3 D 

698502 , 58590 ) ( 934778880 , 78575616 

2 70 

( -69908375342547 , -4919013939420 
( 254857783665620184714 , 23370400912286838060 

(378499465220294881/120530818800 , 0 ) 

2 -8 R 
3 -16 D 
5 -1 R 
7 -2 R 
723361 3 D 

( 7270033 , 456582 ) ( 12615228360 , 1377258876 

3 1 D 
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TABLE VI 

Etor(K) = Z/18Z 

_-1 33 

-162675 , -28296 
35441118 , 6168312 

31701473569/524288 , 5519537297/524288 

2 -9 D 
2 -18 D 
17 0 D 
17 3 D 

3329 3 D 
3329 0 D 

-285 , -48 ) ( -4428 , -756 

-1/4 8214-1 

( -668103059283507 , -6973228583640 
( 3904124025683947091006 , 98714413787929024680 

( 56066410524.7619013954114779457771266159521/17826086125568000 
000000000000000 , -6176028936156912169249015730864995075351/17 
826086125568000000000000000000 

2 -18 D 
2 -36 D 
5 -18 D 
.5 -9 D 
7 -6 D 
7 -3 D 
17 -2 D 
17 -1 D 
197 0 D 
197 3 D 
307 0 D 
307 3 D 
13358503 3 D 
13358503 0 D 
927720953 3 D 
927720953 0 D 

11499447, 88980 ) ( -289oo29240, -31744440 

J/2 33 

( -162675 , 28296 
( 35441118 , -6168312 

( 331701473569/524288 . -3519537297/524288 

2 -18 D 
2 -9 D 
17 3 D 
17 0 D 

3329 0 D 
33 29 3 D 

( 147 , -211 ) ( -540 , 108) 
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For the sake of completeness, we mention that Stephens and Stroeker [12], by a 
different method, have found three elliptic curves with a point of order 11 and one 
elliptic curve with a point of order 15. 

We now give an example of an elliptic curve with a point of order 18, where the 
coefficients are much bigger than before. 

99/2 8691664833337 

( -14768222079904599000226787421543491231849193473355 , -197 
0467345153 166758654514 1839049908324353312 ) 

( 2197129153421664762322899620769929522381 i39061084534394472 
134-34991235571462 , 436909828011668162983205133738536895180142 
37918513251914616441002976 ) 

( 1820771879928064881129012745252230204273591164876834330993 
955 16 1082530792489 10441132076882143415288699418529 1068594483 
46574971204881791849038369/165171715810521209210213942419805 
861455244043038.594604419810218087221490524489372242729838653 
65924688986990759l168 , -19530081342348892804570498768647272 
039415917364691634885610209665o69114446730529340756778918l26 
o6293o584973965243529421910i5604111310340811/1651717158105212 
092102213942419805861455244043038594604419810218037221490524 
489372242729839653659246889869907591168 ) 

( 2476188105984575611665015 , -145343913837642036 

( 680494937500537833832958824599248388 , -764060714620524131 
742929250396 

3 1 D 

Here we were unable to calculate the prime decomposition of the j-invariant, 
because to this end we had to factor the norm of the j-invariant over Q, which is too 
large a number. Our calculations involved much bigger numbers, the biggest one 
being one of 5,000 digits. 

We have added on microfiches (at the end of this issue) a rather comprehensive 
table of examples of elliptic curves with torsion points of order 11, 13, 14 15, 16 and 
18. For lack of computer time, we have not calculated all the prime decompositions 
of j in our tables. 

3. Algorithms. For finding the transformations needed for the calculation of the 
X1(N), no general algorithm exists. The number of steps necessary for carrying out 
the transformations varies greatly. For calculating an equation of XJ(11), we used 3 
steps. In other cases, sometimes more than 15 steps were required. To analyze the 
algebraic curves and to test the transformations, we wrote a program based on 
algorithms for the factorization of polynomials, for birational transformations and 
for computing resultants and singularities [11]. The program works interactively. 
There are many ways to deduce from the raw form the form of the X1(N) given in 
Theorem 1. The user of our program is in the position to interactively test many 
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birational transformations before fixing the next step. The algorithm for the bira- 
tional transformation is as follows: 

(1) Input an algebraic curve P(X, Y) = 0, P(X, Y) E Z[X, Y], 
k I 

P(X, Y) =E E aijX'Yj. 
i=O j=O 

Input the transformation 

X= fA(XM,Y1) _ g1(X1,YJ) 
f2(X1, Y) 92 (xi, YJ) 

fi((X',Y;), gi(X1,Y) e Z[X1,Y; i= 1,2, and 

f2(X11 YJ 
- 

2(X11 YJ * ?' 

(2) Determine P1( X1, Y1) in accordance with the equation 
k I 

P (X, Y) = I E a ijff( X1, Y1)'f2(X1, Yi) gif(Xl, Y1)'g2(X1l, YJ)) 
i=O j=O 

*f2(Xl' ylk* (XY) 

=P1(X1, Y1) * f2 (X1, Y1)k 92 (xi, Y 

P1(Xl, YJ) E ZX1, YJ. 
(3) Print out the polynomial P1(X1, Y1). 

By the above transformation, P1(X1, Y1) = 0 is the curve 
equivalent to P(X, Y) = 0. 
END. 

We now state the algorithm used for the calculation of the tables. 
(1) Input: - X1(N) given in the form y2 = f(X); f(X) E Z[X] 

- the birational transformation to obtain this form of the X1(N) from 
the raw form, and the substitution made during the calculation of 6P. 

- the x-value which we wish to substitute into the equation of X1(N). 
(2) If f(x) = 0 then go to (7). 

Determine the discriminant D of the ground field. 
(3) Determine the coefficients b and c. 

Calculate the discriminant A of a curve E in E(b, c)-form. 
If A = 0 then go to (7). 
If A * 0 then E is an elliptic curve with the point P = (0,0 ) as a point of 
order N. 

(4) Transform E in short and quasi-minimal Weierstrass normal form such that 
the coefficients A and B are elements of Z[Vii]. 

(5) Determine Etor(Q(VD)) by the reduction method. 
Calculate j and the v,(j)-values. 
Compute the ,t-values. 

(6) Print the results in the form described above. 
Go to (8). 

(7) Print that the point (x, f(x)) on X1(N) is a cusp. 
(8) END. 

There is no difficulty in determining the vp-values in a quadratic field K = Q(V), 
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if p lies over a rational prime p which is inert or ramifies in K. In case p is 
decomposed, we can prove the following lemma [11]. 

LEMMA. Let K = Q(Vd), d E Z, be a quadratic field and let p be a rational prime 
which decomposes in K: 

P - P1 * P2 
where p1 and P2 are prime divisors of K. Let A = a, + a2VA Ee Z(Vd), a E Z be 
such that 

a = fgcd(al, a2); if d 2,3mod 4 

\ 2gcd(a1,a2); if d lmod4J 

Let a', at E 2 Z be such that 

A = a(al + aVd) = aA'. 

Then we have 
(i) P 2 * A' implies 

v,,(A) = vp(NK/Q(A)) - vp(a), vI2(A) = vp(a). 

(ii) p + p2 A' implies 

v,,(A) = vp(a), vP2(A) = vp(NK/Q(A)) - vp(a). 

NK/Q denotes the norm function of K/Q, and vp is the normalized p-adic 
exponential valuation of Q. The lemma yields the following algorithm for de- 
termining v,1(A) and vP2(A). 

(1) Input d, a,, a2 and p. 
(2) Determine a, a', a' as in the above lemma. 

If p = 2 then set P2 = (1 - )/2 
else determine a E {1, 2,.. ., (p - 1)/2) such that 
a2= 1moddandsetp2=a-VF. 

(3) Calculate c = P2 -(a' + a2F). 

If p c then go to (4) 
else go to (5). 

(4) Calculate v.,(A) = vp(NK/Q(A)) -vp(a), 
vI2(A) = vp(a). 

END 
(5) Calculate v,,(A) = vp(a), 

vI2(A) = vp(NK/Q(A)) - vp(a). 
END 

The cpu-time used to compute the tables varies greatly because the results are often 
very large numbers. We experienced cpu-times ranging from 15 seconds to half an 
hour for one single example. 

4. Concluding Remarks. (1) The j-invariants of those elliptic curves with a point of 
order 13 or 16 appearing in our tables turn out to be defined already over Q. This is 
probably due to the fact that we obtain our elliptic curves by choosing as x-values 
rational numbers in the equation of X1(N) for N = 13, respectively 16. Also, we 
encountered the phenomenon that different x-values in X1(N), N = 11, 13, 14, 15, 
16 and 18, yield elliptic curves with the same j-invariant. It would be desirable to 
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have some more information about the relationship between the x-values and the 
j-invariants. 

(2) It is, of course, interesting to ask the question as to whether the order N 
(N = 11, 13,14,15,16 and 18) of a torsion point of an elliptic curve over a quadratic 
field K depends on the type of decomposition in K of the rational primes p dividing 
N. This does not seem to be the case for N = 11, 13, 14 and 15 though, in the case of 
N = 14, we have only checked this for the prime p = 7. In the case of N = 16, we 
could not get any result of the desired type. In the case of N = 18, however, the 
prime p = 2 turned out to decompose, and the prime p = 3 either decomposed or 
ramified [11]. 

(3) On the basis of our tables, we could, for the first time, test many important 
theorems and results of the theory of elliptic curves. We could, e.g., verify the 
theorem of Nagell [10] already applied for proving Theorem 2. The /-values of the 
examples coincide with the generalized Nagell-Lutz-Cassels theorem (see [14]). 

(4) Almost all the prime divisors dividing the j-invariants come from prime 
numbers which are decomposed in the corresponding quadratic field. In addition, we 
point out that the exponents of the prime divisors, which occur in the denominators 
of the j-invariants, are as they should be according to the theory of Tate-curves [13]. 
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